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Control Structure of Parallel
Platforms

Processor control structure alternatives
— work independently
— operate under the centralized control of a single control unit

MIMD

— Multiple Instruction streams
* each processor has its own control control unit
* each processor can execute different instructions

— Multiple Data streams
* processors work on their own data

SIMD

- Single Instruction stream
* single control unit dispatches the same instruction to processors

— Multiple Data streams
* processors work on their own data

SIMT
- Similar to SIMD, single instruction stream and multiple data streams
- SIMT is an extension of SIMD that allows programming SIMD with threads
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SIMD and MIMD Processors
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SIMD Control

* SIMD excels for computations with regular structure

— media processing, scientific kernels (e.g., linear algebra,
FFT)

- Image processing
- Machine learning algorithms
- These workloads are also parallel-friendly

* Most SIMD architectures forego complex branch/control
logics and cache/memory management, and dedicate
all transistors to processing units

- Allowing a large number of processing units on a single chip
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SIMD/SIMT Example: Nvidia Pascal
Tesla P100 (2016)

* 56 Streaming Multiprocessors p=

* Each SM —m .  ——
— 64 single-precision (FP32) ] L) L] Bl
+ SEEEEE-C
- 32 double-precision (FP64) units == ====== . =
- 16 special functions units == ====== o =
* Total 3584 FP32 cores and BN B I -

1792 FP64 cores - o

* Peak FP32 GFLOPS: 10600
* Peak FP64 GFLOPS: 5300
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SIMD/SIMT Example: Nvidia

Ampere P102 (2020)

Register File (16,384 x 32-bit) Register File (16,384 x 32-bit)

* Each Streaming
Multiprocessors (SM):

- 64 FP32/INT32 Cores

* INT32 cores support INT4, INT8
and INT32 operations

* FP32 cores support FP32 and
FP16 operations

- 64 FP32 Cores
- 2 FP64 cores (not in the figure)

Register File (16,384 x 32-bit)

— 8 Tensor Cores

- 1 RT (Ray Tracing) Core e o o B o o [N

128KB L1 Data Cache / Shared Memory

- 256KB Register File = = . =

RT CORE
2nd Generation
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SIMD/SIMT Example: Nvidia
Ampere P102 (2020)
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SIMD/SIMT Example: Nvidia Ada

AD102/RTX4090 (2022)

* Each Streaming
Multiprocessors (SM):

- 64 FP32/INT32 Cores

* INT32 cores support INT4, INT8
and INT32 operations

 FP32 cores support FP32 and
FP16 operations

- 64 FP32 Cores

- 2 FP64 cores (not in the figure)
- 4 Tensor Cores

- 1 RT (Ray Tracing) Core

- 256KB Register File
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SIMD/SIMT Example: Nvidia Ada

AD102/RTX4090 (2022)
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SIMD/SIMT Example: Nvidia Ada
AD102/RTX4090 (2022)
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SIMD Example: Intel Xeon Phi 7290
Knights Landing

e /2 cores

KNL Overview

 Each core
- Four SMT threads
- 512-bit vector units
- 32KB L1 cache
- 1MB L2 cache

* Max GFLOPS: 3000

Parallel Computing

2 x16 xa
1 x4 omi

MCDRAM  MCORAM

Chip: Up to 36 Tiles interconnected by 2D Mesh
Tile: 2 Cores + 2 VPU/core + 1 MB L2

Memory: MCDRAM: 16 GB on-package; High BW

DDR4: 6 channels @ 2400 up to 384 GB

10: 36 lanes PCle* Gen3. 4 lanes of DM for chipset

Node: 1-Socket only
Fabric: Intel* Omni-Path Architecture on-vackage
(not shown)

Vector Peak Perf: 3+TF DP and 6+T§
Scalar Perf: ~3x over Knights Cor
Streams Triad (GB/s): MCDRAM £400+; DDR: 90+
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Why SIMD?

* SIMD offers much higher theoretical peak
performance over MIMD (CPU) per watt

“ANVIDIA

GPU Motivation (I): Performance Trends

Peak Double Precision FLOPS Peak Memory Bandwidth

8000 GEROF 1400 GRys
7000

6000

5000 |-

/
4000 M

-=-NVIDIA GPU --x86 CPU -=-NVIDIA GPU -e-x86 CPU
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The Actual Difference Between CPU
and GPU

A 2010 Intel study suggests that GPU Is only
2.5x faster than CPU on average

* A 2015 study shows that GPU is about 0 to 60x
faster than CPU for several machine learning
workloads

— Note that the implementation is probably not
optimized

- These are the results of one GPU vs one CPU.
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CPU Core V.S. GPU Core

* For an Nvidia GPU, a core has

One 32-bit floating point unit (FPU)

One 32-bit Integer unit (ALU)

Additionally, a few 64-bit FPUs and functional units are located outside GPU cores
Newer version of GPU also supports L1 cache per SM

Designed and optimized for graphic processing

* For an Intel Processor, a core typically has

4 ALUs

2 256-bit FPU

4 256-bit Vector ALU

2-4 LD/ST units, LEAL units

Complex out-of-order execution management, branch prediction and memory disambiguation
64KB L1 cache

256KB L2 cache

Designed and optimized for general computing

Parallel Computing
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GPGPU Programming

 GPGPU Programming: General-purpose computing on graphics
processing units
* Motivation

— Certain problems are similar to graphic applications in that they involve
significant number of linear algebra operations and stream data
processing

- These problems also have limited data reuse and branches, similar to
graphic applications

- GPUs are faster than CPUs with these problems because the large
number of processing units

 Therefore, It is both viable and beneficial to solve these
problems on GPU
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