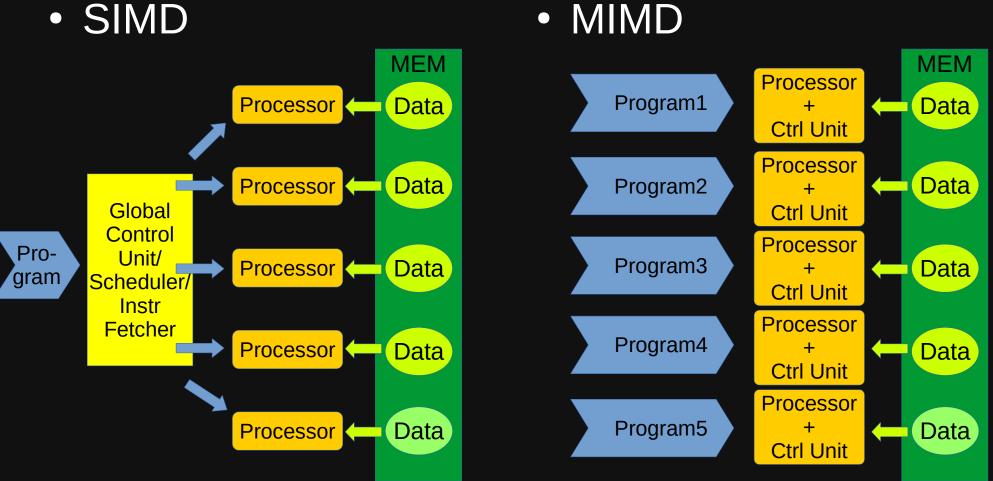
GPGPU Computing and SIMD


Wei Wang

Parallel Computing

Control Structure of Parallel Platforms

- Processor control structure alternatives
 - work independently
 - operate under the centralized control of a single control unit
- MIMD
 - Multiple Instruction streams
 - · each processor has its own control control unit
 - each processor can execute different instructions
 - Multiple Data streams
 - processors work on their own data
- SIMD
 - Single Instruction stream
 - single control unit dispatches the same instruction to processors
 - Multiple Data streams
 - processors work on their own data
- SIMT
 - Similar to SIMD, single instruction stream and multiple data streams
 - SIMT is an extension of SIMD that allows programming SIMD with threads

SIMD and MIMD Processors

• MIMD

SIMD Control

- SIMD excels for computations with regular structure
 - media processing, scientific kernels (e.g., linear algebra, FFT)
 - Image processing
 - Machine learning algorithms
 - These workloads are also parallel-friendly
- Most SIMD architectures forego complex branch/control logics and cache/memory management, and dedicate all transistors to processing units
 - Allowing a large number of processing units on a single chip

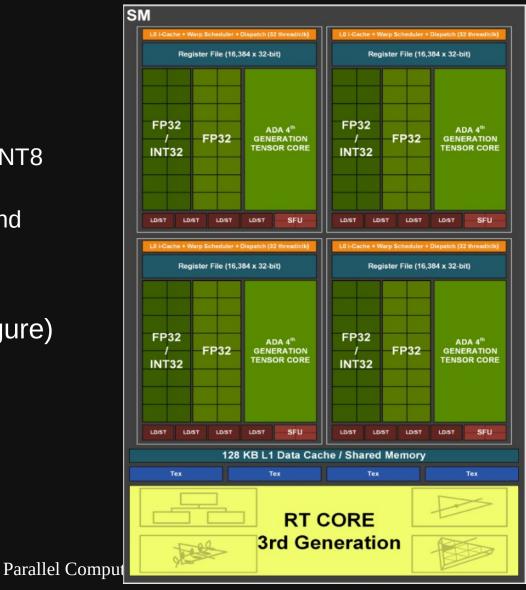
SIMD/SIMT Example: Nvidia Pascal Tesla P100 (2016)

- 56 Streaming Multiprocessors (SM)
- Each SM
 - 64 single-precision (FP32)
 CUDA cores
 - 32 double-precision (FP64) units
 - 16 special functions units
- Total 3584 FP32 cores and 1792 FP64 cores
- Peak FP32 GFLOPS: 10600
- Peak FP64 GFLOPS: 5300

SM Instruction Cache																	
	Instruction Buffer									Instruction Buffer							
	Warp Scheduler								Warp Scheduler								
	Dispatch Unit				Dispatch Unit				Dispatch Unit				Dispatch Unit				
	Register File (32,768 x 32-bit)								Register File (32,768 x 32-bit)								
	Core	Core	DP Unit	Core	Core	DP Unit	LD/ST	SFU	Core	Core	DP Unit	Core	Core	DP Unit	LD/ST	SFU	
	Core	Core	DP Unit	Core	Core	DP Unit	LD/ST	SFU	Core	Core	DP Unit	Core	Core	DP Unit	LD/ST	SFU	
	Core	Core	DP Unit	Core	Core	DP Unit	LD/ST	SFU	Core	Core	DP Unit	Core	Core	DP Unit	LD/ST	SFU	
	Core	Core	DP Unit	Core	Core	DP Unit	LD/ST	SFU	Core	Core	DP Unit	Core	Core	DP Unit	LD/ST	SFU	
	Core	Core	DP Unit	Core	Core	DP Unit	LD/ST	SFU	Core	Core	DP Unit	Core	Core	DP Unit	LD/ST	SFU	
	Core	Core	DP Unit	Core	Core	DP Unit	LD/ST	SFU	Core	Core	DP Unit	Core	Core	DP Unit	LD/ST	SFU	
	Core	Core	DP Unit	Core	Core	DP Unit	LD/ST	SFU	Core	Core	DP Unit	Core	Core	DP Unit	LD/ST	SFU	
	Core	Core	DP Unit	Core	Core	DP Unit	LD/ST	SFU	Core	Core	DP Unit	Core	Core	DP Unit	LD/ST	SFU	
		Texture / L1 Cache															
		Tex Tex							Tex				Tex				
		_		_	_		6	4KB Shai	red Memo	ry				_	_		

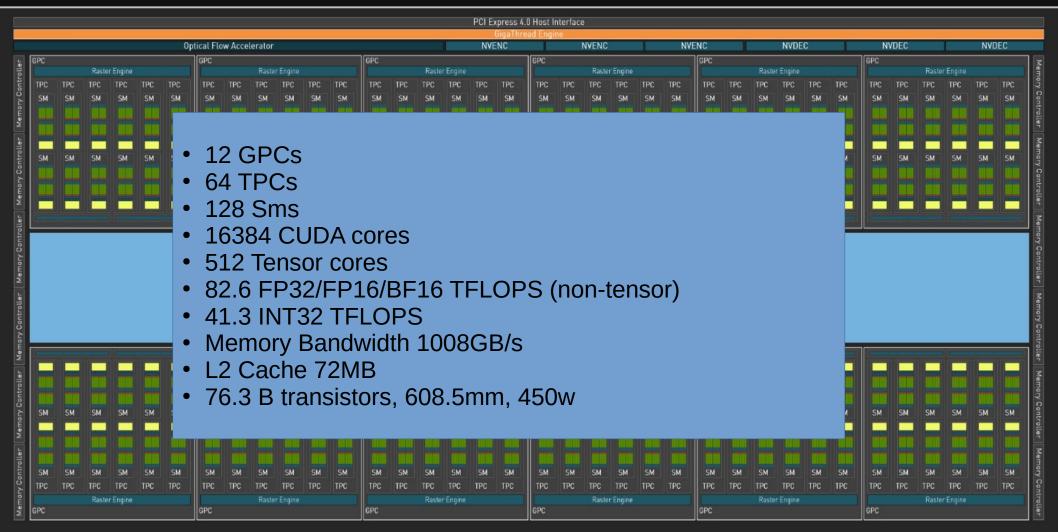
SIMD/SIMT Example: Nvidia Ampere P102 (2020)

- Each Streaming Multiprocessors (SM):
 - 64 FP32/INT32 Cores
 - INT32 cores support INT4, INT8 and INT32 operations
 - FP32 cores support FP32 and FP16 operations
 - 64 FP32 Cores
 - 2 FP64 cores (not in the figure)
 - 8 Tensor Cores
 - 1 RT (Ray Tracing) Core
 - 256KB Register File

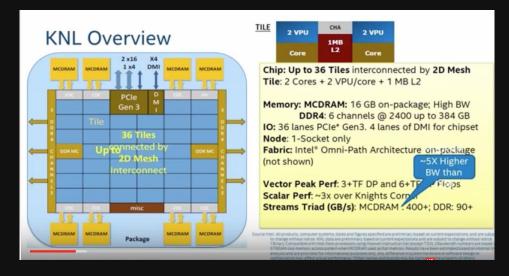


SIMD/SIMT Example: Nvidia Ampere P102 (2020)

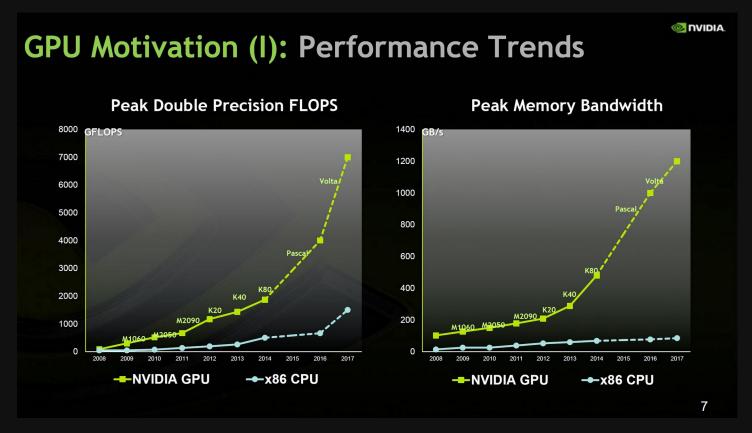
SIMD/SIMT Example: Nvidia Ada AD102/RTX4090 (2022)


- Each Streaming Multiprocessors (SM):
 - 64 FP32/INT32 Cores
 - INT32 cores support INT4, INT8 and INT32 operations
 - FP32 cores support FP32 and FP16 operations
 - 64 FP32 Cores
 - 2 FP64 cores (not in the figure)
 - 4 Tensor Cores
 - 1 RT (Ray Tracing) Core
 - 256KB Register File

SIMD/SIMT Example: Nvidia Ada AD102/RTX4090 (2022)



SIMD/SIMT Example: Nvidia Ada AD102/RTX4090 (2022)


SIMD Example: Intel Xeon Phi 7290 Knights Landing

- 72 cores
- Each core
 - Four SMT threads
 - 512-bit vector units
 - 32KB L1 cache
 - 1MB L2 cache
- Max GFLOPS: 3000

Why SIMD?

• SIMD offers much higher theoretical peak performance over MIMD (CPU) per watt

The Actual Difference Between CPU and GPU

- A 2010 Intel study suggests that GPU is only 2.5x faster than CPU on average
- A 2015 study shows that GPU is about 0 to 60x faster than CPU for several machine learning workloads
 - Note that the implementation is probably not optimized
 - These are the results of one GPU vs one CPU.

CPU Core V.S. GPU Core

- For an Nvidia GPU, a core has
 - One 32-bit floating point unit (FPU)
 - One 32-bit Integer unit (ALU)
 - Additionally, a few 64-bit FPUs and functional units are located outside GPU cores
 - Newer version of GPU also supports L1 cache per SM
 - Designed and optimized for graphic processing
- For an Intel Processor, a core typically has
 - 4 ALUs
 - 2 256-bit FPU
 - 4 256-bit Vector ALU
 - 2-4 LD/ST units, LEAL units
 - Complex out-of-order execution management, branch prediction and memory disambiguation
 - 64KB L1 cache
 - 256KB L2 cache
 - Designed and optimized for general computing

GPGPU Programming

- GPGPU Programming: General-purpose computing on graphics processing units
- Motivation
 - Certain problems are similar to graphic applications in that they involve significant number of linear algebra operations and stream data processing
 - These problems also have limited data reuse and branches, similar to graphic applications
 - GPUs are faster than CPUs with these problems because the large number of processing units
- Therefore, It is both viable and beneficial to solve these problems on GPU